Tuomas Uusheimo: AALTO 20151016, Aalto-yliopiston kandidaattikeskus Y-osa / Aalto University Undergraduate Centre Y-block, Espoo, Finland

Aalto University is a community of bold thinkers where science and art meet technology and business. We are committed to identifying and solving grand societal challenges and building an innovative future. Aalto has six schools with nearly 11 000 students and a staff of more than 4000, of which 400 are professors. Our main campus is located in Espoo, Finland. Diversity is part of who we are, and we actively work to ensure our community’s diversity and inclusiveness in the future as well. This is why we warmly encourage qualified candidates from all backgrounds to join our community.

The Quantum Nanomechanics group https://www.aalto.fi/en/department-of-applied-physics/quantum-nanomechanics at the Department of Applied Physics is looking for outstanding

Postdoctoral researchers

to carry out experimental research on different projects related to quantum micromechanical systems. In our team, we investigate how mechanical oscillators can be utilized for fundamental research probing quantum mechanics in massive systems, or for usage in quantum information processing. In our research, we have demonstrated quantum entanglement between two micromechanical oscillators realized as vibrating aluminum drumheads [Nature 556, 478 (2018)Science 372, 625 (2021)].

Project 1: Gravitational coupling between nonclassical masses

In this project, the goal is to touch a hundred-year-old mystery of physics: Despite its success at describing phenomena in the low-energy limit, quantum mechanics is incompatible with general relativity that describes gravity and huge energies. The interface between these two has remained experimentally elusive, because only the most violent events in the universe have been considered to produce measurable effects due to the plausible quantum behavior of gravity. We aim at detecting gravitational forces for the first time within a quantum system. We use mechanical oscillators loaded by milligram masses and bring two such gravitationally interacting oscillators into nonclassical motional states. Initially, we will measure the gravitational force between gold particles weighing a milligram, representing a new mass scale showing gravitational forces within a system.

Project 2: Quantum acoustics

For quantum technology, integrating acoustic modes into superconducting circuits shows great promise for applications as quantum memory elements, bosonic codes, or in frequency conversion. We are working on High-Overtone Bulk Acoustic (HBAR) resonances that extend through the chip, and couple resonantly to transmon qubits. In ongoing and future work, we are promoting the devices to host several qubits, each coupled one or several HBAR modes. This will allow for creating mechanical entanglement, and is a step towards phononic quantum chips. To realize processing of flying quantum phonons on a chip, we will connect standing HBAR modes into phonon waveguides which can be used to connect qubits.

Project 3: Magneto acoustics

Besides electromechanics, we are building hybrid devices that aim on controlling ferromagnetic magnons using acoustic waves. Owing to the large speed of light, realizing cavity optomechanics in the microwave frequency range requires cavities up to several mm in size, hence making it hard to embed several of them on the same chip. An alternative scheme with much smaller footprint is provided by magneto acoustics, where the electromagnetic cavity is replaced by a magnet undergoing ferromagnetic resonance, and the optomechanical coupling originates from magnetic shape anisotropy. The small footprint of these hybrid devices shows promise for applications in novel signal processing. We use vibrating magnetic nanobeams, or multilayer structures consisting of magnetic and piezoelectric layers. In the latter structures, we couple magnons to longitudinal overtone (HBAR) acoustic modes, and to surface acoustic waves.

Your role

The experimental work in all these projects involves design of the samples and of the measurement setups, cleanroom fabrication, running microwave measurements in dilution refrigerators, and data analysis. You are expected to participate in instructing PhD students.

Your experience and ambitions

For this challenging research, we are looking for brilliant and energetic individuals who are motivated in experimental, low-temperature quantum physics. We require the candidates to have a proven track record in experimental research with similar or related topics, clean room microfabrication, and strong interest in micromechanical systems. Additionally, the candidates should be excellent team players. Experience with cryogenics and dilution refrigerators, and skill in theoretical understanding of the studied phenomena, are considered significant assets.

We require the candidates to have excellent skills in English. Finnish language is not required. To be eligible, a postdoctoral researcher must hold a PhD degree in a suitable field.

What we offer

The Quantum Nanomechanics team, ambitous but relaxed with a great team spirit, carries out top -notch experimental research on the foundations of quantum mechanics. With superconducting qubits, we explore processing of quantum information with mechanical motion. In our more applied research, we lay the foundation for a new generation of devices that use various types of microwave-optomechanical effects for efficient signal processing. We have realized quantum-limited microwave amplifiers and nonreciprocal components to be used in superconducting quantum technology.

The fixed term contract is typically initially for two years, and can be extended on mutual agreement. Aalto University follows the salary system of Finnish universities. The starting salary for a Postdoctoral researcher is approx. 3800€/month. The salary ranges from 3800€ to 4100€ per month, depending on previous experience. The contract includes occupational healthcare.

The workplace will be the Otaniemi Campus of Aalto University, in the premises of the OtaNano national research infrastructure for micro- and nanotechnologies. OtaNano provides access to all the advanced nanofabrication, nanomicroscopy and measurement facilities and techniques. VTT Technical Research Centre of Finland on campus leverages the bridge between research and innovation. Several startup companies working with electronics, cryogenics, and quantum technology have recently emerged in the community. Our team belongs to the national Centre of Excellence – Quantum Technology Finland that is harnessing quantum phenomena for solid-state-based quantum devices and applications. We also belong to the European Microkelvin Platform collaboration.

Ready to apply?

To apply for the position, please submit your application including the attachments mentioned below as one single PDF document in English through our online recruitment system by using the link on Aalto University’s web page (“Apply Now”).

(1)   Letter of motivation
(2)   CV including list of publications
(3)   Degree certificates and academic transcripts
(4)   Contact details of at least two referees

The deadline for applications is March 31, 2023. We will go through applications, and we may invite suitable candidates to interview already during the application period. The positions will be filled as soon as suitable candidates are identified. For additional information, kindly contact Prof. Mika SillanpääMika.Sillanpaa@aalto.fi. Aalto University reserves the right for justified reasons to leave the position open, to extend the application period, reopen the application process, and to consider candidates who have not submitted applications during the application period.

Please note: Aalto University’s employees and visitors should apply for the position via our internal system Workday -> find jobs (not external aalto.fi webpage on open positions) by using their existing Workday user account.

Want to know more about us and your future colleagues?You can watch these videos: Aalto University – Towards a better worldAalto People , and Shaping a Sustainable FutureAnd this webpage about Aalto and Finland.

Check out our new virtual campus experience: https://virtualtour.aalto.fi/  

About Finland

Finland is a great place for living with or without family – it is a safe, politically stable and well-organized Nordic society. Finland is consistently ranked high in quality of life and was just listed again as the happiest country in the world: https://worldhappiness.report/news/its-a-three-peat-finland-keeps-top-spot-as-happiest-country-in-world/. For more information about living in Finland: https://www.aalto.fi/services/about-finland
 

Interested?

Apply now

Leave a Reply